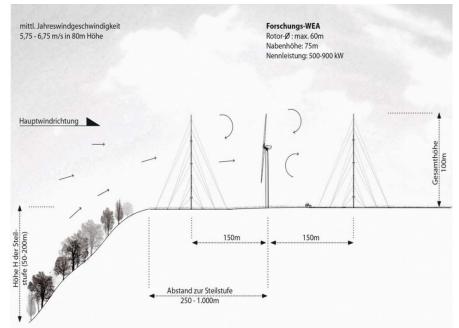


NatForWINSENT -

Tests von Detektionssystemen im Rahmen der Naturschutzforschung im Windenergietestfeld


KNE-Fachkonferenz, Kassel, 15. Mai 2019

Dr. Janine Aschwanden Dr. Frank Musiol

NatForWINSENT – Naturschutzforschung im Windenergietestfeld

- "WINSENT" ein Vorhaben des Windenergie-Forschungsclusters Süd
- Weltweit erstes
 Forschungstestfeld im komplexen Gelände
- Erprobung und Validierung neuer Technologien
- Aktuell zwei Messmasten errichtet
- Vollständige Realisierung aus Mitteln des BMWi und UMBW für 2020 vorgesehen

NatForWINSENT – Naturschutzforschung im Windenergietestfeld

- Bereitstellung des Testfelds auch für die Erforschung von Fragestellungen des Naturschutzes
- Enge Verzahnung Testfeldbetrieb mit Naturschutzforschung
- Nutzung neuer Möglichkeiten zur Schließung von Erkenntnislücken:
 - Umfangreiche Infrastruktur und Messeinrichtungen
 - Möglichkeit des Eingriffs ins Betriebsregime
- Im Fokus: Vermeidungsmaßnahmen für Vögel und Fledermäuse
- Gefördert durch:

Überblick Ziele und Phasen Teilbereich Vögel

- Zentrales Ziel: Konzipierung und Test von Vermeidungsmassnahmen zum Schutz von Vögeln
 - → Fokus automatische Vogeldetektionssysteme zur bedarfsgerechten Betriebsregulierung
 - → Erstellung eines Anforderungsprofils, das solche Systeme für einen effektiven Einsatz erfüllen sollten
- Phase I (jetzt bis 30.4.2020): Nutzung der Vorlaufzeit bis zur Errichtung der Forschungs-WEA
 - → Erhebung von Basisdaten vor dem Bau
 - → Tests zur Vogelerkennung bei automatischen Detektionssystemen
- Phase II (1.5.2020 bis 31.10.2021):
 - → Erhebung von Basisdaten nach dem Bau
 - → Tests zur Vogelerkennung bei automatischen Detektionssystemen und Pilottest automatisierte bedarfsgerechte Betriebsregulierungen

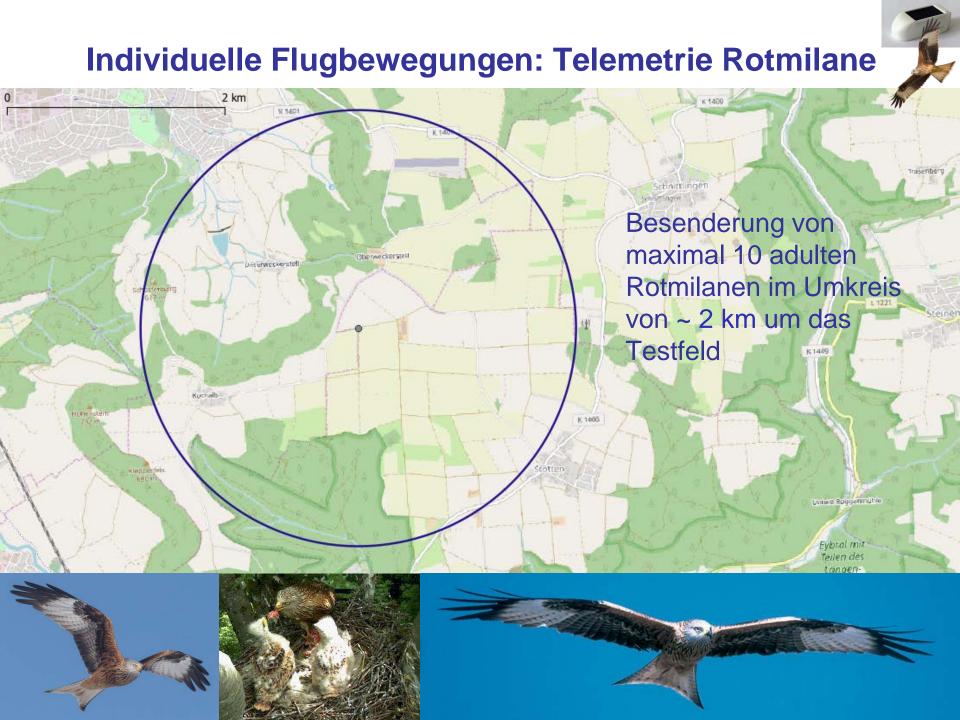
vogelwarte.ch

Überblick Basisdaten und Verschneidungen

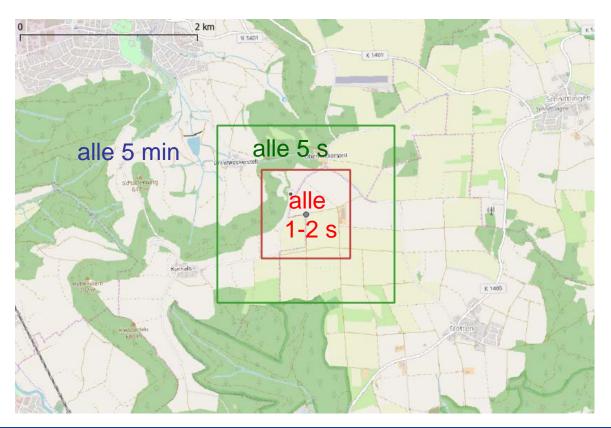
Flugverhalten in Abhängigkeit der Umweltparameter, die das Kollisionsrisiko beeinflussen

Umweltparameter
z.B. Sichtweite, Wind,
Niederschlag...

Individuelle Flugbewegungen Telemetrie Rotmilan Sichtbeobachtungen «grössere Vögel» mittels Laser-Range-Finder



Individuelle Flugbewegungen: Telemetrie Rotmilane

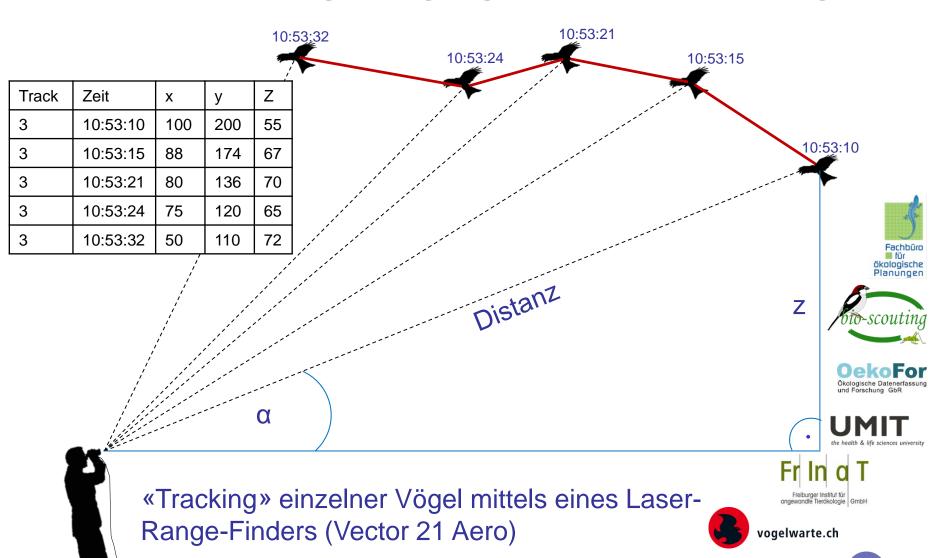


Kontinuierliche Speicherung der Positionsdaten am Tag:

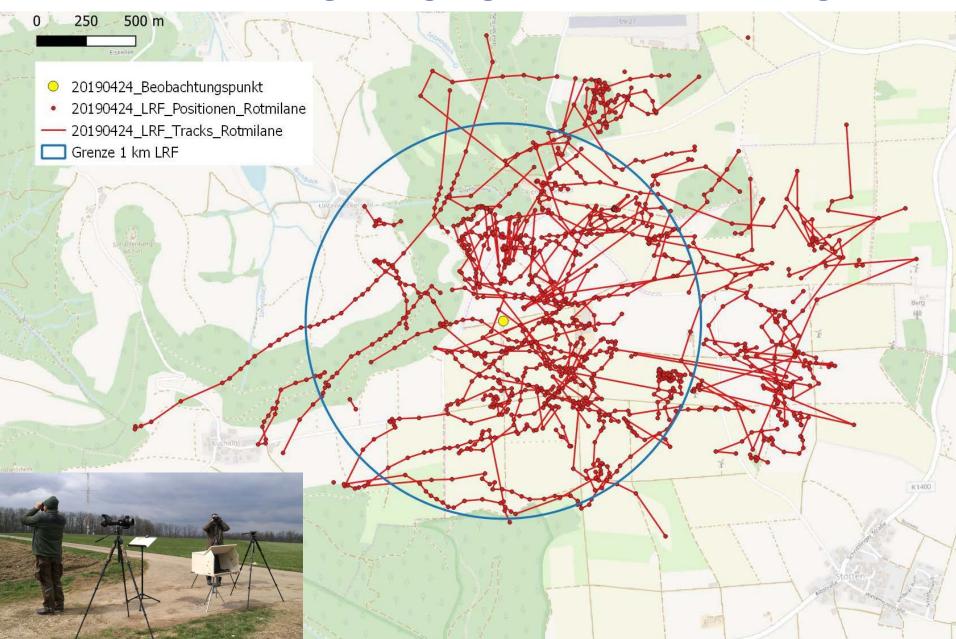
> 1 km um Testfeld: alle 5 min

500 m - 1 km: alle 5s

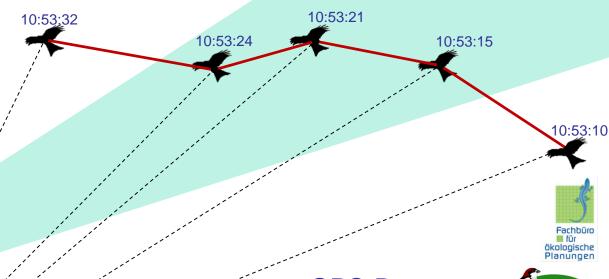
< 500 m: alle 1-2s



Individuelle Flugbewegungen: Sichtbeobachtungen



Individuelle Flugbewegungen: Sichtbeobachtungen

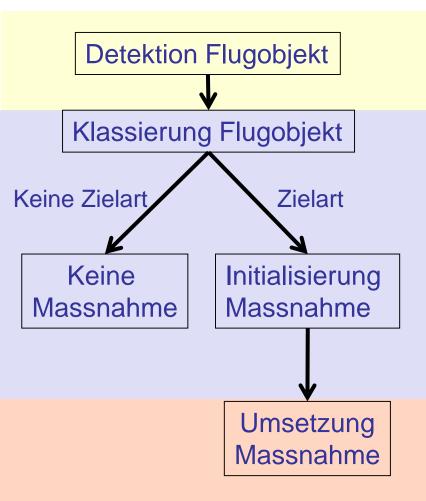


Individuelle Flugbewegungen: Sichtbeobachtungen

Test Detektionssysteme: Methode

Objekt	Zeit	Distanz	
Insekt	09:02:10	2	
Vogel	09:00:00	100	
Vogel	10:53:20	250	
Insekt	10:57:00	1	
Vogel	11:28:17	80	

+ GPS-Daten Rotmilane


vogelwarte.ch

· • • • • • • • • • • • • • • • • • • •					
Track	Zeit	Х	у	Z	
3	10:53:10	100	200	55	
3	10:53:15	88	174	67	
3	10:53:21	80	136	70	
3	10:53:24	75	120	65	
3	10:53:32	50	110	72	

Test Detektionssysteme: Wichtigste Fragen

- Objekterkennung ab welcher Distanz?
- Zielartenerkennung ab welcher Distanz?
- Nicht-Zielart als Zielart (Falschpositive)?
 - → Wirtschaftlichkeit
- Zielart als Nicht-Zielart (Falschnegative)? → Vogelschutz
- Erste Eindrücke zur Wirkung einer Betriebsregulierung?
- Einfluss auf Wirtschaftlichkeit?

Test Detektionssysteme: Erwartete Ergebnisse (ca. bis Ende 2020)

- Erkenntnisse zur Effektivität der Zielartenerkennung bei unterschiedlichen Detektionssystemen
- Erste Eindrücke und Erkenntnisse im Zusammenhang mit bedarfsgerechten Betriebsregulierungsmassnahmen
- Gewinn von Erkenntnissen zur Erstellung eines Anforderungsprofils, das solche Systeme für einen effektiven Einsatz erfüllen sollten, unter Berücksichtigung der Erkenntnisse zum Flugverhalten grösserer Vögel

Planungen

Test von insgesamt vier Systemen vorgesehen

Sie haben Interesse, Ihr System testen zu lassen?

Testzeiträume: Juli – September 2019

April – Juli 2020

Dauer der Tests: ca. 3-4 Wochen + Auf- und Abbau

Fachbüro Für Ökologische Planungen

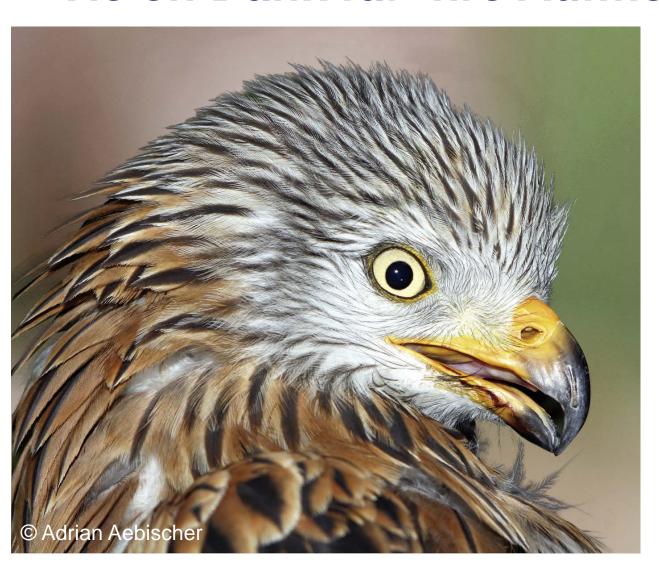
Voraussetzungen: - Zugriff auf Systemdaten

- Angaben zum überwachten Raum

- Weitere Details in Absprache

Ökologische Datenerfassung und Forschung GbR

Kontakt: frank.musiol@zsw-bw.de



Vielen Dank für Ihre Aufmerksamkeit!

Fragen?

